9 research outputs found

    Investigation and Design of Different Antennas in Solar Cells' Environments with Their Needed Tools

    Get PDF
    With the spread use of solar cells as a renewable energy source and the wide use of wireless communications, it is interesting to use the solar cell panels as an energy source for rural wireless communications for security and safety. For compactness, it is proposed to embed antennas in the solar cell panels. Therefore, it is proposed to investigate the antenna characteristics within this environment. As such, the characteristics of the solar cells in the radio frequency region should be studied for proper design of the antennas in such an environment. Therefore, a rigorous design approach for antennas in the solar cells' environment is proposed through this work. A practical model of the solar cells in the microwave frequency range is presented using anisotropic surface impedance boundaries. Two different surface impedance measurement setups are exploited to accurately model solar cells. Moreover, measurements of antennas' radiation efficiency are invoked in this work using the Wheeler cap concept in a contactless fashion to perform measurements within solar cells' environments. A novel measurement technique has been proposed extending conventional Wheeler cap capabilities to measure wide band antennas. The technique promotes a straightforward processing procedure and convenient measurement setup. In addition, a simple, fast, and efficient numerical solution for the electromagnetic scattering arbitrary problems is proposed. Based on the uniqueness theorem and the use of novel equivalent problems with Random Auxiliary Sources (\emph{RAS}), more degrees of freedom are added resulting in significantly faster solutions. The proposed technique is expected to provide a significant reduction in the execution time and memory requirements compared to the surface equivalent based Method of Moments (MoM) as the inherent properties of this procedure are used. Various verification and result cases are presented to assess the introduced technique, which is incorporated into different analysis and design problems in this work. Moreover, the RAS method is extended to model antennas in their radiating and scattering modes, which, in turns, is adopted in the reflectarray antenna analysis and design procedures. The introduced solar cells models along with the developed computations and measurement tools are used to develop a design procedure for antennas suited for the solar cells environment. An optically transparent reflectarray antenna integrated with solar cells is proposed as an application of interest that suits satellite communication purposes. Material choice, feed antenna tailored design and rigorous design procedures are presented to enhance the achievable performance of the antenna/solar cells integrated device

    Modeling and Design Empirical Formulas of Microstrip Ridge Gap Waveguide

    Get PDF

    Anti-prostate cancer metabolites from the soil-derived Aspergillus neoniveus

    Get PDF
    Prostate cancer (PCa) ranks as one of the most commonly diagnosed malignancies worldwide. Toxicity, lack of clinical efficacy, and development of resistance phenotypes are the main challenges in the control of prostate malignancies. Notably, castration-resistance prostate cancer (CRPCa) is a highly aggressive and metastatic phenotype of the disease with a poor prognosis and very limited therapeutic options. Herein, we report the isolation and genotypic identification of a soil-derived fungus Aspergillus neoniveus using the PCR-based internal transcribed spacer (ITS) region amplification approach. HPLC/MS investigation of the metabolic profile of the ethyl acetate extract from the fungal biomass revealed tentative identification of forty-five compounds belonging to various chemical classes including γ-butyrolactones, alkaloids, phenolics, and quinoids. Furthermore, the chromatographic purification of microbial extract enabled the identification of nervonic acid methyl ester (1) for the first time from endophytic fungi, as well as acetyl aszonalenin (2), and butyrolactone II (3) for the first time from A. neoniveus. The chemical frameworks of the isolated compounds were identified via extensive spectral analysis including 1 and 2D NMR and MS. The X-ray crystal structure and absolute configuration of acetyl aszonalenin (2) were also determined. Additionally, screening of in vitro anticancer activity of the fungal extract revealed its potential antiproliferative and anti-migratory activities against five different prostate cancer cells (PC3, PC-3M, DU-145, CWR-R1ca, and 22Rv1), including different cells with the castration-resistance phenotype. Moreover, the isolated metabolites significantly inhibited the proliferation, migration, and colonization of human prostate cancer cells at low micromolar levels, thus providing credence for future investigation of these metabolites in relevant anti-prostate cancer animal models. Furthermore, computational target prediction tools identified the cannabinoid G-protein coupled receptors type 1 (CB1) as a potential biological target mediating, at least in part, the anticancer effects of acetylaszonalenin (2). Moreover, molecular modeling and docking studies revealed a favorable binding pose at the CB1 receptor orthosteric ligand pocket aided by multiple polar and hydrophobic interactions with critical amino acids. In conclusion, the Aspergillus neoniveus-derived prenylated indole alkaloid acetylaszonalenin has promising anticancer activity and is amenable to further hit-to-lead optimization for the control of prostate malignancies via modulating CB1 receptor

    Bioactive metabolites identified from Aspergillus terreus derived from soil

    No full text
    Abstract Aspergillus terreus has been reported to produce many bioactive metabolites that possess potential activities including anti-inflammatory, cytotoxic, and antimicrobial activities. In the present study, we report the isolation and identification of A. terreus from a collected soil sample. The metabolites existing in the microbial ethyl acetate extract were tentatively identified by HPLC/MS and chemically categorized into alkaloids, terpenoids, polyketides, γ-butyrolactones, quinones, and peptides. In addition, a new triglyceride (1) and a diketopiperazine derivative namely asterrine (4), together with two known butyrolactone (2–3) were purified from the extract. The chemical skeleton of the purified compounds was established by comprehensive analysis of their ESI/MS, 1 and 2D-NMR data. The extract and compounds 3,4 exhibited a strong inhibitory activity for the binding of ACE2 to SARS-CoV-2 spike-protein receptor with IC50 7.4, 9.5, and 8.5 µg/mL, respectively. In addition, the extract, 1 and 2 displayed a potent anti-inflammatory effect with IC50 51.31 and 37.25 pg/mL (Il-6) and 87.97, 68.22 pg/mL (TNF-α), respectively, in comparison to LPS control. In addition, the extract and compound 4 displayed an antimicrobial effect towards S. aureus by MIC 62.5 and 125 μg/mL, while the extract exhibited a potent effect against C. albicans (MIC of 125 μg/mL). Collectively, our data introduce novel bioactivities for the secondary metabolites produced by the terrestrial fungus Aspergillus terreus. 

    Cytotoxicity, Antimicrobial, and In Silico Studies of Secondary Metabolites From Aspergillus sp. Isolated From Tecoma stans (L.) Juss. Ex Kunth Leaves

    Get PDF
    Elsayed HE, Kamel RA, Ibrahim RR, et al. Cytotoxicity, Antimicrobial, and In Silico Studies of Secondary Metabolites From Aspergillus sp. Isolated From Tecoma stans (L.) Juss. Ex Kunth Leaves. Frontiers in Chemistry. 2021;9: 760083.Endophytes are prolific producers of privileged secondary metabolites with diverse therapeutic potential, although their anticancer and antimicrobial potential still have a room for further investigation. Herein, seven known secondary metabolites namely, arugosin C (1), ergosterol (2), iso-emericellin (3), sterigmatocystin (4), dihydrosterigmatocystin (5), versicolorin B (6), and diorcinol (7) were isolated from the rice culture ofAspergillus sp.retrieved fromTecoma stans(L.) Juss. ex Kunth leaves. Their anticancer and antimicrobial activities were evaluated in MTT and agar well diffusion assays, respectively. The cytotoxicity results showed that metabolite3displayed the best viability inhibition on the MCF-7 breast cancer cells with IC50= 225.21 µM, while5on the HepG2 hepatocellular carcinoma cells with IC50= 161.81 µM.5demonstrated a 60% apoptotic mode of cell death which is virtually correlated to its high docking affinity to Hsp90 ATP binding cleft (binding score −8.4 Kcal/mol). On the other side, metabolites4and5displayed promising antimicrobial activity especially onPseudomonas aeruginosawith MIC = 125 μg/ml. The observed effect may be likely related to their excellentin silicoinhibition of the bacterial DNA-gyrase kinase domain (binding score −10.28 Kcal/mol). To the best of our knowledge, this study is the first to report the promising cytotoxic and antibacterial activities of metabolites 3, 4, and 5 which needs further investigation and renovation to therapeutic leads

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease

    Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatory actions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19. Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospital with COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients were randomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once per day by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatment groups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment and were twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants and local study staff were not masked to the allocated treatment, but all others involved in the trial were masked to the outcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) were eligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was 65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomly allocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall, 561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days (rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median 10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days (rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, no significant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilation or death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24). Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or other prespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restricted to patients in whom there is a clear antimicrobial indication. Funding UK Research and Innovation (Medical Research Council) and National Institute of Health Research
    corecore